Tuesday, June 23, 2015
Thursday, June 4, 2015
Wednesday, March 25, 2015
From Small Things Considered, more long cells (and furry nematodes):
Pende 2014 - Size-independent symmetric division in extraordinarily long cells
A Snippet. How Do Long Bacteria Snip Apart?
Tuesday, March 24, 2015
Saturday, February 7, 2015
Exploring Bacterial Organelle Interactomes: A Model of the Protein-Protein Interaction Network in the Pdu Microcompartment
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004067
Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu) microcompartment. It contains the reactions for degrading 1,2-propanediol. While several experimental studies on the Pdu system have provided hints about its organization, a clear picture of how all the individual components interact has not emerged yet. Here we use co-evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to predict the protein-protein interaction (PPI) network governing the assembly of the Pdu MCP. We propose a model of the Pdu interactome, from which selected PPIs are further inspected via computational docking simulations. We find that shell protein PduA is able to serve as a “universal hub” for targeting an array of enzymes presenting special N-terminal extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also propose that PduV, a protein of unknown function with remote homology to the Ras-like GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding β-barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction. This first systematic computational study aimed at characterizing the interactome of a bacterial microcompartment provides fresh insight into the organization of the Pdu MCP.
Bacterial microcompartments (MCPs) are protein-bound organelles that carry out diverse metabolic pathways in a wide range of bacteria. These supramolecular assemblies consist of a thin outer protein shell, reminiscent of a viral capsid, which encapsulates sequentially acting enzymes. The most complex MCP elucidated so far is the propanediol utilizing (Pdu) microcompartment. It contains the reactions for degrading 1,2-propanediol. While several experimental studies on the Pdu system have provided hints about its organization, a clear picture of how all the individual components interact has not emerged yet. Here we use co-evolution-based methods, involving pairwise comparisons of protein phylogenetic trees, to predict the protein-protein interaction (PPI) network governing the assembly of the Pdu MCP. We propose a model of the Pdu interactome, from which selected PPIs are further inspected via computational docking simulations. We find that shell protein PduA is able to serve as a “universal hub” for targeting an array of enzymes presenting special N-terminal extensions, namely PduC, D, E, L and P. The varied N-terminal peptides are predicted to bind in the same cleft on the presumptive luminal face of the PduA hexamer. We also propose that PduV, a protein of unknown function with remote homology to the Ras-like GTPase superfamily, is likely to localize outside the MCP, interacting with the protruding β-barrel of the hexameric PduU shell protein. Preliminary experiments involving a bacterial two-hybrid assay are presented that corroborate the existence of a PduU-PduV interaction. This first systematic computational study aimed at characterizing the interactome of a bacterial microcompartment provides fresh insight into the organization of the Pdu MCP.
Wednesday, February 4, 2015
Recent Growth Law Papers of Interest
Taheri 2015 - Cell-Size Control and Homeostasis in Bacteria
Iyer 2014 - Scaling laws governing stochastic growth and division of single bacterial cells
To recap: bacteria extend by a constant size during each cell cycle, which leads to size maintenance, and most everything can be re-scaled by nutrients and temperature.
Friday, January 30, 2015
Where Next for Microbiome Research?
http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002050
The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.
The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.
Calorie Restriction-Mediated Replicative Lifespan Extension in Yeast Is Non-Cell Autonomous
http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002048
In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.
Subscribe to:
Posts (Atom)